This is a snapshot of an early working draft and has therefore been superseded by the HTML standard.

This document will not be further updated.


Call For Comments — 27 October 2007

1.3. Conformance requirements

All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this document are to be interpreted as described in RFC2119. For readability, these words do not appear in all uppercase letters in this specification. [RFC2119]

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space characters" or "return false and abort these steps") are to be interpreted with the meaning of the key word ("must", "should", "may", etc) used in introducing the algorithm.

This specification describes the conformance criteria for user agents (relevant to implementors) and documents (relevant to authors and authoring tool implementors).

There is no implied relationship between document conformance requirements and implementation conformance requirements. User agents are not free to handle non-conformant documents as they please; the processing model described in this specification applies to implementations regardless of the conformity of the input documents.

User agents fall into several (overlapping) categories with different conformance requirements.

Web browsers and other interactive user agents

Web browsers that support XHTML must process elements and attributes from the HTML namespace found in XML documents as described in this specification, so that users can interact with them, unless the semantics of those elements have been overridden by other specifications.

A conforming XHTML processor would, upon finding an XHTML script element in an XML document, execute the script contained in that element. However, if the element is found within an XSLT transformation sheet (assuming the UA also supports XSLT), then the processor would instead treat the script element as an opaque element that forms part of the transform.

Web browsers that support HTML must process documents labelled as text/html as described in this specification, so that users can interact with them.

Non-interactive presentation user agents

User agents that process HTML and XHTML documents purely to render non-interactive versions of them must comply to the same conformance criteria as Web browsers, except that they are exempt from requirements regarding user interaction.

Typical examples of non-interactive presentation user agents are printers (static UAs) and overhead displays (dynamic UAs). It is expected that most static non-interactive presentation user agents will also opt to lack scripting support.

A non-interactive but dynamic presentation UA would still execute scripts, allowing forms to be dynamically submitted, and so forth. However, since the concept of "focus" is irrelevant when the user cannot interact with the document, the UA would not need to support any of the focus-related DOM APIs.

User agents with no scripting support

Implementations that do not support scripting (or which have their scripting features disabled) are exempt from supporting the events and DOM interfaces mentioned in this specification. For the parts of this specification that are defined in terms of an events model or in terms of the DOM, such user agents must still act as if events and the DOM were supported.

Scripting can form an integral part of an application. Web browsers that do not support scripting, or that have scripting disabled, might be unable to fully convey the author's intent.

Conformance checkers

Conformance checkers must verify that a document conforms to the applicable conformance criteria described in this specification. Conformance checkers are exempt from detecting errors that require interpretation of the author's intent (for example, while a document is non-conforming if the content of a blockquote element is not a quote, conformance checkers do not have to check that blockquote elements only contain quoted material).

Conformance checkers must check that the input document conforms when scripting is disabled, and should also check that the input document conforms when scripting is enabled. (This is only a "SHOULD" and not a "MUST" requirement because it has been proven to be impossible. [HALTINGPROBLEM])

The term "HTML5 validator" can be used to refer to a conformance checker that itself conforms to the applicable requirements of this specification.

XML DTDs cannot express all the conformance requirements of this specification. Therefore, a validating XML processor and a DTD cannot constitute a conformance checker. Also, since neither of the two authoring formats defined in this specification are applications of SGML, a validating SGML system cannot constitute a conformance checker either.

To put it another way, there are three types of conformance criteria:

  1. Criteria that can be expressed in a DTD.
  2. Criteria that cannot be expressed by a DTD, but can still be checked by a machine.
  3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple DTD-based validator only checks for the first class of errors and is therefore not a conforming conformance checker according to this specification.

Data mining tools

Applications and tools that process HTML and XHTML documents for reasons other than to either render the documents or check them for conformance should act in accordance to the semantics of the documents that they process.

A tool that generates document outlines but increases the nesting level for each paragraph and does not increase the nesting level for each section would not be conforming.

Authoring tools and markup generators

Authoring tools and markup generators must generate conforming documents. Conformance criteria that apply to authors also apply to authoring tools, where appropriate.

Authoring tools are exempt from the strict requirements of using elements only for their specified purpose, but only to the extent that authoring tools are not yet able to determine author intent.

For example, it is not conforming to use an address element for arbitrary contact information; that element can only be used for marking up contact information for the author of the document or section. However, since an authoring tools is likely unable to determine the difference, an authoring tool is exempt from that requirement.

In terms of conformance checking, an editor is therefore required to output documents that conform to the same extent that a conformance checker will verify.

When an authoring tool is used to edit a non-conforming document, it may preserve the conformance errors in sections of the document that were not edited during the editing session (i.e. an editing tool is allowed to round-trip errorneous content). However, an authoring tool must not claim that the output is conformant if errors have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from structure or semantic data, and tools that work on a What-You-See-Is-What-You-Get media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the structure in the source information can be used to make informed choices regarding which HTML elements and attributes are most appropriate.

However, WYSIWYG tools are legitimate, and this specification makes certain concessions to WYSIWYG editors.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling users to create well-structured, semantically rich, media-independent content.

Some conformance requirements are phrased as requirements on elements, attributes, methods or objects. Such requirements fall into two categories; those describing content model restrictions, and those describing implementation behaviour. The former category of requirements are requirements on documents and authoring tools. The second category are requirements on user agents.

Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be performant.)

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks, to guard against running out of memory, or to work around platform-specific limitations.

For compatibility with existing content and prior specifications, this specification describes two authoring formats: one based on XML (referred to as XHTML5), and one using a custom format inspired by SGML (referred to as HTML5). Implementations may support only one of these two formats, although supporting both is encouraged.

XHTML documents (XML documents using elements from the HTML namespace) that use the new features described in this specification and that are served over the wire (e.g. by HTTP) must be sent using an XML MIME type such as application/xml or application/xhtml+xml and must not be served as text/html. [RFC3023]

Such XML documents may contain a DOCTYPE if desired, but this is not required to conform to this specification.

According to the XML specification, XML processors are not guaranteed to process the external DTD subset referenced in the DOCTYPE. This means, for example, that using entities for characters in XHTML documents is unsafe (except for <, >, &, " and '). For interoperability, authors are advised to avoid optional features of XML.

HTML documents, if they are served over the wire (e.g. by HTTP) must be labelled with the text/html MIME type.

The language in this specification assumes that the user agent expands all entity references, and therefore does not include entity reference nodes in the DOM. If user agents do include entity reference nodes in the DOM, then user agents must handle them as if they were fully expanded when implementing this specification. For example, if a requirement talks about an element's child text nodes, then any text nodes that are children of an entity reference that is a child of that element would be used as well.

1.3.1. Common conformance requirements for APIs exposed to JavaScript

A lot of arrays/lists/collections in this spec assume zero-based indexes but use the term "indexth" liberally. We should define those to be zero-based and be clearer about this.

Unless other specified, if a DOM attribute that is a floating point number type (float) is assigned an Infinity or Not-a-Number value, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a DOM attribute that is a signed numeric type is assigned a negative value, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a method with an argument that is a floating point number type (float) is passed an Infinity or Not-a-Number value, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a method is passed fewer arguments than is defined for that method in its IDL definition, a NOT_SUPPORTED_ERR exception must be raised.

Unless other specified, if a method is passed more arguments than is defined for that method in its IDL definition, the excess arguments must be ignored.

Unless other specified, if a method is expecting, as one of its arguments, as defined by its IDL definition, an object implementing a particular interface X, and the argument passed is an object whose [[Class]] property is neither that interface X, nor the name of an interface Y where this specification requires that all objects implementing interface Y also implement interface X, nor the name of an interface that inherits from the expected interface X, then a TYPE_MISMATCH_ERR exception must be raised.

Anything else? Passing the wrong type of object, maybe? Implied conversions to int/float?

1.3.2. Dependencies

This specification relies on several other underlying specifications.


Implementations that support XHTML5 must support some version of XML, as well as its corresponding namespaces specification, because XHTML5 uses an XML serialisation with namespaces. [XML] [XMLNAMES]

XML Base

User agents must follow the rules given by XML Base to resolve relative URIs in HTML and XHTML fragments. That is the mechanism used in this specification for resolving relative URIs in DOM trees. [XMLBASE]

It is possible for xml:base attributes to be present even in HTML fragments, as such attributes can be added dynamically using script.


Implementations must support some version of DOM Core and DOM Events, because this specification is defined in terms of the DOM, and some of the features are defined as extensions to the DOM Core interfaces. [DOM3CORE] [DOM3EVENTS]


Implementations that use ECMAScript to implement the APIs defined in this specification must implement them in a manner consistent with the ECMAScript Bindings for DOM Specifications specification, as this specification uses that specification's terminology. [EBFD]

This specification does not require support of any particular network transport protocols, image formats, audio formats, video formats, style sheet language, scripting language, or any of the DOM and WebAPI specifications beyond those described above. However, the language described by this specification is biased towards CSS as the styling language, ECMAScript as the scripting language, and HTTP as the network protocol, and several features assume that those languages and protocols are in use.

1.3.3. Features defined in other specifications

Some elements are defined in terms of their DOM textContent attribute. This is an attribute defined on the Node interface in DOM3 Core. [DOM3CORE]

Should textContent be defined differently for dir="" and <bdo>? Should we come up with an alternative to textContent that handles those and other things, like alt=""?

The term activation behavior is used as defined in the DOM3 Events specification. [DOM3EVENTS] At the time of writing, DOM3 Events hadn't yet been updated to define that phrase.

The rules for handling alternative style sheets are defined in the CSS object model specification. [CSSOM]


Certain features are defined in terms of CSS <color> values. When the CSS value currentColor is specified in this context, the "computed value of the 'color' property" for the purposes of determining the computed value of the currentColor keyword is the computed value of the 'color' property on the element in question. [CSS3COLOR]

If a canvas gradient's addColorStop() method is called with the currentColor keyword as the color, then the computed value of the 'color' property on the canvas element is the one that is used.